metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.40C24, D20.35C23, 2- 1+4⋊4D5, Dic10.35C23, C5⋊5(Q8○D8), (C5×D4).39D4, (C5×Q8).39D4, C4○D4.17D10, C20.272(C2×D4), D4⋊D5.2C22, (C2×Q8).93D10, C4.40(C23×D5), Q8⋊D5.3C22, D4.21(C5⋊D4), D4.Dic5⋊13C2, C5⋊2C8.19C23, Q8.21(C5⋊D4), (C5×D4).28C23, D4.28(C22×D5), D4.D5.3C22, D4.9D10⋊12C2, D4.8D10⋊11C2, (C5×Q8).28C23, Q8.28(C22×D5), C20.C23⋊12C2, C5⋊Q16.4C22, (C2×C20).121C23, C4○D20.34C22, C10.174(C22×D4), (C5×2- 1+4)⋊3C2, D4.10D10⋊10C2, (Q8×C10).154C22, C4.Dic5.32C22, (C2×Dic10).211C22, C4.78(C2×C5⋊D4), (C2×C5⋊Q16)⋊32C2, (C2×C10).88(C2×D4), C22.9(C2×C5⋊D4), C2.47(C22×C5⋊D4), (C5×C4○D4).30C22, (C2×C4).105(C22×D5), (C2×C5⋊2C8).185C22, SmallGroup(320,1510)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C4○D4 — 2- 1+4 |
Generators and relations for D20.35C23
G = < a,b,c,d,e | a20=b2=e2=1, c2=d2=a10, bab=a-1, ac=ca, ad=da, eae=a11, bc=cb, bd=db, ebe=a15b, dcd-1=a10c, ce=ec, de=ed >
Subgroups: 726 in 248 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, D4, Q8, Q8, Q8, D5, C10, C10, C2×C8, M4(2), D8, SD16, Q16, C2×Q8, C2×Q8, C4○D4, C4○D4, C4○D4, Dic5, C20, C20, C20, D10, C2×C10, C2×C10, C8○D4, C2×Q16, C4○D8, C8.C22, 2- 1+4, 2- 1+4, C5⋊2C8, C5⋊2C8, Dic10, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C5×D4, C5×Q8, C5×Q8, C5×Q8, Q8○D8, C2×C5⋊2C8, C4.Dic5, D4⋊D5, D4.D5, Q8⋊D5, C5⋊Q16, C2×Dic10, C4○D20, D4⋊2D5, Q8×D5, Q8×C10, Q8×C10, C5×C4○D4, C5×C4○D4, C5×C4○D4, C20.C23, C2×C5⋊Q16, D4.Dic5, D4.8D10, D4.9D10, D4.10D10, C5×2- 1+4, D20.35C23
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C5⋊D4, C22×D5, Q8○D8, C2×C5⋊D4, C23×D5, C22×C5⋊D4, D20.35C23
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 23)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 50)(48 49)(57 60)(58 59)(61 67)(62 66)(63 65)(68 80)(69 79)(70 78)(71 77)(72 76)(73 75)(81 92)(82 91)(83 90)(84 89)(85 88)(86 87)(93 100)(94 99)(95 98)(96 97)(101 109)(102 108)(103 107)(104 106)(110 120)(111 119)(112 118)(113 117)(114 116)(121 136)(122 135)(123 134)(124 133)(125 132)(126 131)(127 130)(128 129)(137 140)(138 139)(142 160)(143 159)(144 158)(145 157)(146 156)(147 155)(148 154)(149 153)(150 152)
(1 97 11 87)(2 98 12 88)(3 99 13 89)(4 100 14 90)(5 81 15 91)(6 82 16 92)(7 83 17 93)(8 84 18 94)(9 85 19 95)(10 86 20 96)(21 104 31 114)(22 105 32 115)(23 106 33 116)(24 107 34 117)(25 108 35 118)(26 109 36 119)(27 110 37 120)(28 111 38 101)(29 112 39 102)(30 113 40 103)(41 131 51 121)(42 132 52 122)(43 133 53 123)(44 134 54 124)(45 135 55 125)(46 136 56 126)(47 137 57 127)(48 138 58 128)(49 139 59 129)(50 140 60 130)(61 148 71 158)(62 149 72 159)(63 150 73 160)(64 151 74 141)(65 152 75 142)(66 153 76 143)(67 154 77 144)(68 155 78 145)(69 156 79 146)(70 157 80 147)
(1 59 11 49)(2 60 12 50)(3 41 13 51)(4 42 14 52)(5 43 15 53)(6 44 16 54)(7 45 17 55)(8 46 18 56)(9 47 19 57)(10 48 20 58)(21 63 31 73)(22 64 32 74)(23 65 33 75)(24 66 34 76)(25 67 35 77)(26 68 36 78)(27 69 37 79)(28 70 38 80)(29 71 39 61)(30 72 40 62)(81 123 91 133)(82 124 92 134)(83 125 93 135)(84 126 94 136)(85 127 95 137)(86 128 96 138)(87 129 97 139)(88 130 98 140)(89 131 99 121)(90 132 100 122)(101 157 111 147)(102 158 112 148)(103 159 113 149)(104 160 114 150)(105 141 115 151)(106 142 116 152)(107 143 117 153)(108 144 118 154)(109 145 119 155)(110 146 120 156)
(1 40)(2 31)(3 22)(4 33)(5 24)(6 35)(7 26)(8 37)(9 28)(10 39)(11 30)(12 21)(13 32)(14 23)(15 34)(16 25)(17 36)(18 27)(19 38)(20 29)(41 64)(42 75)(43 66)(44 77)(45 68)(46 79)(47 70)(48 61)(49 72)(50 63)(51 74)(52 65)(53 76)(54 67)(55 78)(56 69)(57 80)(58 71)(59 62)(60 73)(81 107)(82 118)(83 109)(84 120)(85 111)(86 102)(87 113)(88 104)(89 115)(90 106)(91 117)(92 108)(93 119)(94 110)(95 101)(96 112)(97 103)(98 114)(99 105)(100 116)(121 141)(122 152)(123 143)(124 154)(125 145)(126 156)(127 147)(128 158)(129 149)(130 160)(131 151)(132 142)(133 153)(134 144)(135 155)(136 146)(137 157)(138 148)(139 159)(140 150)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(57,60)(58,59)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,92)(82,91)(83,90)(84,89)(85,88)(86,87)(93,100)(94,99)(95,98)(96,97)(101,109)(102,108)(103,107)(104,106)(110,120)(111,119)(112,118)(113,117)(114,116)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129)(137,140)(138,139)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152), (1,97,11,87)(2,98,12,88)(3,99,13,89)(4,100,14,90)(5,81,15,91)(6,82,16,92)(7,83,17,93)(8,84,18,94)(9,85,19,95)(10,86,20,96)(21,104,31,114)(22,105,32,115)(23,106,33,116)(24,107,34,117)(25,108,35,118)(26,109,36,119)(27,110,37,120)(28,111,38,101)(29,112,39,102)(30,113,40,103)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,148,71,158)(62,149,72,159)(63,150,73,160)(64,151,74,141)(65,152,75,142)(66,153,76,143)(67,154,77,144)(68,155,78,145)(69,156,79,146)(70,157,80,147), (1,59,11,49)(2,60,12,50)(3,41,13,51)(4,42,14,52)(5,43,15,53)(6,44,16,54)(7,45,17,55)(8,46,18,56)(9,47,19,57)(10,48,20,58)(21,63,31,73)(22,64,32,74)(23,65,33,75)(24,66,34,76)(25,67,35,77)(26,68,36,78)(27,69,37,79)(28,70,38,80)(29,71,39,61)(30,72,40,62)(81,123,91,133)(82,124,92,134)(83,125,93,135)(84,126,94,136)(85,127,95,137)(86,128,96,138)(87,129,97,139)(88,130,98,140)(89,131,99,121)(90,132,100,122)(101,157,111,147)(102,158,112,148)(103,159,113,149)(104,160,114,150)(105,141,115,151)(106,142,116,152)(107,143,117,153)(108,144,118,154)(109,145,119,155)(110,146,120,156), (1,40)(2,31)(3,22)(4,33)(5,24)(6,35)(7,26)(8,37)(9,28)(10,39)(11,30)(12,21)(13,32)(14,23)(15,34)(16,25)(17,36)(18,27)(19,38)(20,29)(41,64)(42,75)(43,66)(44,77)(45,68)(46,79)(47,70)(48,61)(49,72)(50,63)(51,74)(52,65)(53,76)(54,67)(55,78)(56,69)(57,80)(58,71)(59,62)(60,73)(81,107)(82,118)(83,109)(84,120)(85,111)(86,102)(87,113)(88,104)(89,115)(90,106)(91,117)(92,108)(93,119)(94,110)(95,101)(96,112)(97,103)(98,114)(99,105)(100,116)(121,141)(122,152)(123,143)(124,154)(125,145)(126,156)(127,147)(128,158)(129,149)(130,160)(131,151)(132,142)(133,153)(134,144)(135,155)(136,146)(137,157)(138,148)(139,159)(140,150)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(57,60)(58,59)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,92)(82,91)(83,90)(84,89)(85,88)(86,87)(93,100)(94,99)(95,98)(96,97)(101,109)(102,108)(103,107)(104,106)(110,120)(111,119)(112,118)(113,117)(114,116)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129)(137,140)(138,139)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152), (1,97,11,87)(2,98,12,88)(3,99,13,89)(4,100,14,90)(5,81,15,91)(6,82,16,92)(7,83,17,93)(8,84,18,94)(9,85,19,95)(10,86,20,96)(21,104,31,114)(22,105,32,115)(23,106,33,116)(24,107,34,117)(25,108,35,118)(26,109,36,119)(27,110,37,120)(28,111,38,101)(29,112,39,102)(30,113,40,103)(41,131,51,121)(42,132,52,122)(43,133,53,123)(44,134,54,124)(45,135,55,125)(46,136,56,126)(47,137,57,127)(48,138,58,128)(49,139,59,129)(50,140,60,130)(61,148,71,158)(62,149,72,159)(63,150,73,160)(64,151,74,141)(65,152,75,142)(66,153,76,143)(67,154,77,144)(68,155,78,145)(69,156,79,146)(70,157,80,147), (1,59,11,49)(2,60,12,50)(3,41,13,51)(4,42,14,52)(5,43,15,53)(6,44,16,54)(7,45,17,55)(8,46,18,56)(9,47,19,57)(10,48,20,58)(21,63,31,73)(22,64,32,74)(23,65,33,75)(24,66,34,76)(25,67,35,77)(26,68,36,78)(27,69,37,79)(28,70,38,80)(29,71,39,61)(30,72,40,62)(81,123,91,133)(82,124,92,134)(83,125,93,135)(84,126,94,136)(85,127,95,137)(86,128,96,138)(87,129,97,139)(88,130,98,140)(89,131,99,121)(90,132,100,122)(101,157,111,147)(102,158,112,148)(103,159,113,149)(104,160,114,150)(105,141,115,151)(106,142,116,152)(107,143,117,153)(108,144,118,154)(109,145,119,155)(110,146,120,156), (1,40)(2,31)(3,22)(4,33)(5,24)(6,35)(7,26)(8,37)(9,28)(10,39)(11,30)(12,21)(13,32)(14,23)(15,34)(16,25)(17,36)(18,27)(19,38)(20,29)(41,64)(42,75)(43,66)(44,77)(45,68)(46,79)(47,70)(48,61)(49,72)(50,63)(51,74)(52,65)(53,76)(54,67)(55,78)(56,69)(57,80)(58,71)(59,62)(60,73)(81,107)(82,118)(83,109)(84,120)(85,111)(86,102)(87,113)(88,104)(89,115)(90,106)(91,117)(92,108)(93,119)(94,110)(95,101)(96,112)(97,103)(98,114)(99,105)(100,116)(121,141)(122,152)(123,143)(124,154)(125,145)(126,156)(127,147)(128,158)(129,149)(130,160)(131,151)(132,142)(133,153)(134,144)(135,155)(136,146)(137,157)(138,148)(139,159)(140,150) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,23),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,50),(48,49),(57,60),(58,59),(61,67),(62,66),(63,65),(68,80),(69,79),(70,78),(71,77),(72,76),(73,75),(81,92),(82,91),(83,90),(84,89),(85,88),(86,87),(93,100),(94,99),(95,98),(96,97),(101,109),(102,108),(103,107),(104,106),(110,120),(111,119),(112,118),(113,117),(114,116),(121,136),(122,135),(123,134),(124,133),(125,132),(126,131),(127,130),(128,129),(137,140),(138,139),(142,160),(143,159),(144,158),(145,157),(146,156),(147,155),(148,154),(149,153),(150,152)], [(1,97,11,87),(2,98,12,88),(3,99,13,89),(4,100,14,90),(5,81,15,91),(6,82,16,92),(7,83,17,93),(8,84,18,94),(9,85,19,95),(10,86,20,96),(21,104,31,114),(22,105,32,115),(23,106,33,116),(24,107,34,117),(25,108,35,118),(26,109,36,119),(27,110,37,120),(28,111,38,101),(29,112,39,102),(30,113,40,103),(41,131,51,121),(42,132,52,122),(43,133,53,123),(44,134,54,124),(45,135,55,125),(46,136,56,126),(47,137,57,127),(48,138,58,128),(49,139,59,129),(50,140,60,130),(61,148,71,158),(62,149,72,159),(63,150,73,160),(64,151,74,141),(65,152,75,142),(66,153,76,143),(67,154,77,144),(68,155,78,145),(69,156,79,146),(70,157,80,147)], [(1,59,11,49),(2,60,12,50),(3,41,13,51),(4,42,14,52),(5,43,15,53),(6,44,16,54),(7,45,17,55),(8,46,18,56),(9,47,19,57),(10,48,20,58),(21,63,31,73),(22,64,32,74),(23,65,33,75),(24,66,34,76),(25,67,35,77),(26,68,36,78),(27,69,37,79),(28,70,38,80),(29,71,39,61),(30,72,40,62),(81,123,91,133),(82,124,92,134),(83,125,93,135),(84,126,94,136),(85,127,95,137),(86,128,96,138),(87,129,97,139),(88,130,98,140),(89,131,99,121),(90,132,100,122),(101,157,111,147),(102,158,112,148),(103,159,113,149),(104,160,114,150),(105,141,115,151),(106,142,116,152),(107,143,117,153),(108,144,118,154),(109,145,119,155),(110,146,120,156)], [(1,40),(2,31),(3,22),(4,33),(5,24),(6,35),(7,26),(8,37),(9,28),(10,39),(11,30),(12,21),(13,32),(14,23),(15,34),(16,25),(17,36),(18,27),(19,38),(20,29),(41,64),(42,75),(43,66),(44,77),(45,68),(46,79),(47,70),(48,61),(49,72),(50,63),(51,74),(52,65),(53,76),(54,67),(55,78),(56,69),(57,80),(58,71),(59,62),(60,73),(81,107),(82,118),(83,109),(84,120),(85,111),(86,102),(87,113),(88,104),(89,115),(90,106),(91,117),(92,108),(93,119),(94,110),(95,101),(96,112),(97,103),(98,114),(99,105),(100,116),(121,141),(122,152),(123,143),(124,154),(125,145),(126,156),(127,147),(128,158),(129,149),(130,160),(131,151),(132,142),(133,153),(134,144),(135,155),(136,146),(137,157),(138,148),(139,159),(140,150)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 10A | 10B | 10C | ··· | 10L | 20A | ··· | 20T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 20 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 20 | 20 | 20 | 2 | 2 | 10 | 10 | 20 | 20 | 20 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | C5⋊D4 | C5⋊D4 | Q8○D8 | D20.35C23 |
kernel | D20.35C23 | C20.C23 | C2×C5⋊Q16 | D4.Dic5 | D4.8D10 | D4.9D10 | D4.10D10 | C5×2- 1+4 | C5×D4 | C5×Q8 | 2- 1+4 | C2×Q8 | C4○D4 | D4 | Q8 | C5 | C1 |
# reps | 1 | 3 | 3 | 1 | 3 | 3 | 1 | 1 | 3 | 1 | 2 | 6 | 8 | 12 | 4 | 2 | 2 |
Matrix representation of D20.35C23 ►in GL6(𝔽41)
34 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 21 | 0 | 0 |
0 | 0 | 37 | 40 | 0 | 0 |
0 | 0 | 10 | 33 | 1 | 18 |
0 | 0 | 29 | 2 | 9 | 40 |
1 | 34 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 21 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 33 | 1 | 18 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 12 | 13 | 0 |
0 | 0 | 0 | 4 | 0 | 17 |
0 | 0 | 29 | 37 | 27 | 19 |
0 | 0 | 0 | 40 | 0 | 37 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 2 | 9 | 0 |
0 | 0 | 0 | 1 | 0 | 37 |
0 | 0 | 32 | 25 | 11 | 10 |
0 | 0 | 0 | 21 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 6 | 0 | 0 |
0 | 0 | 34 | 17 | 0 | 0 |
0 | 0 | 38 | 5 | 24 | 11 |
0 | 0 | 20 | 24 | 26 | 17 |
G:=sub<GL(6,GF(41))| [34,40,0,0,0,0,1,0,0,0,0,0,0,0,1,37,10,29,0,0,21,40,33,2,0,0,0,0,1,9,0,0,0,0,18,40],[1,0,0,0,0,0,34,40,0,0,0,0,0,0,1,0,0,0,0,0,21,40,33,0,0,0,0,0,1,0,0,0,0,0,18,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,14,0,29,0,0,0,12,4,37,40,0,0,13,0,27,0,0,0,0,17,19,37],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,30,0,32,0,0,0,2,1,25,21,0,0,9,0,11,0,0,0,0,37,10,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,24,34,38,20,0,0,6,17,5,24,0,0,0,0,24,26,0,0,0,0,11,17] >;
D20.35C23 in GAP, Magma, Sage, TeX
D_{20}._{35}C_2^3
% in TeX
G:=Group("D20.35C2^3");
// GroupNames label
G:=SmallGroup(320,1510);
// by ID
G=gap.SmallGroup(320,1510);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,184,675,1684,235,102,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^20=b^2=e^2=1,c^2=d^2=a^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e=a^11,b*c=c*b,b*d=d*b,e*b*e=a^15*b,d*c*d^-1=a^10*c,c*e=e*c,d*e=e*d>;
// generators/relations